

ΕΕΕΕΘ - 25 Φ	εβρουαρίου 2009			6
Strain and curvature du	ue to body and surface waves (after St.	John and Zahrah, 1987)		
Wave type	Longitudinal strain	Normal strain	Shear strain	Curvature
P-wave	$\varepsilon_l = \frac{V_P}{C_P} \cos^2 \phi$	$\varepsilon_n = \frac{V_P}{C_P} \sin^2 \phi$	$\gamma = \frac{V_P}{C_P} \sin\phi \cos\phi$	$\frac{1}{p} = \frac{a_P}{C_P^2} \sin \phi \cos^2 \phi$
	$\varepsilon_{lm} - \frac{V_P}{C_P} \text{for } \phi = 0^\circ$	$s_{lm} = \frac{V_p}{C_p}$ for $\phi = 90^{\circ}$	$\gamma_m = \frac{V_P}{2C_P} \text{for } \varphi = 45^\circ$	$\frac{1}{\rho_{max}} = 0.385 \frac{a_P}{C_P^2}$ for $\phi = 35^{\circ}16^{\circ}$
S-wave	$\varepsilon_l = \frac{V_S}{C_S} \sin \phi \cos \phi$	$\varepsilon_n = \frac{V_S}{C_S} \sin\phi\cos\phi$	$\gamma = \frac{V_S}{C_S} \cos^2 \phi$	$K - \frac{a_5}{C_5^2} \cos^2 \phi$
	$\varepsilon_{lm} = \frac{V_S}{2C_S}$ for $\phi = 45^\circ$	$e_{nm} = \frac{V_S}{2C_S}$ for $\phi = 45^\circ$	$\gamma_m = \frac{V_S}{C_S}$ for $\phi = 0^\circ$	$K_m = \frac{a_S}{C_S^2}$ for $\phi = 0^\circ$
Rayleigh wave Compressional	$\varepsilon_l = \frac{V_{RP}}{C_R} \cos^2 \phi$	$s_n = \frac{V_{RP}}{C_R} \sin^2 \phi$	$\gamma = \frac{V_{RP}}{C_R} \sin \phi \cos \phi$	$K - \frac{a_{RP}}{C_R^2} \sin\phi \cos^2\phi$
component	$\epsilon_{lm} = \frac{V_{RP}}{C_R}$ for $\phi = 0^\circ$	$e_{nm} = \frac{V_{RP}}{C_R}$ for $\phi = 90^{\circ}$	$\gamma_m = \frac{V_P}{2C_R}$ for $\phi = 45^\circ$	$K_m = 0.385 \frac{a_{RP}}{C_R^2}$ for $\phi = 35^{\circ}16'$
Shear component		$\varepsilon_n = \frac{V_{RS}}{C_R} \sin \phi$	$\gamma = \frac{V_{RP}}{C_R} \cos \phi$	$K - \frac{a_{RS}}{C_R^2} \cos^2 \phi$
		$\varepsilon_{nm} = \frac{V_{RS}}{C_R}$ for $\phi = 90^\circ$	$\gamma_m = \frac{V_{RS}}{C_R}$ for $\phi = 0^\circ$	$K_m = \frac{a_{RS}}{C_R^2}$ for $\phi = 0^\circ$
The Poisson's ratio	and dynamic modulus of a soil depos	sit can be computed from measured P-	and S-wave propagation velocities in a	an elastic medium: $v_m = \frac{1}{2} \frac{(C_p/C_s)^2 - 2}{(C_p/C_t)^2 - 1}$ or C_p
$-\sqrt{\frac{2(1-v_m)}{(1-v_m)}C_s}; E_m$	$-\rho C_{p}^{2} \frac{(1+v_{m})(1-2v_{m})}{(1-v_{m})}; \text{ and } G_{m}-\rho$	C_S^2 , respectively.		
				63

Moment magnitude (M_w)	Ratio of po	Ratio of peak ground velocity (cm/s) to peak ground acceleration (g) Source-to-site distance (km)		
	Source-to-			
	0-20	20-50	50-100	
Rock ^a				
6.5	66	76	86	
7.5	97	109	97	
8.5	127	140	152	
Stiff soil ^a				
6.5	94	102	109	
7.5	140	127	155	
8.5	180	188	193	
Soft soil ^a				
65	140	132	142	
7.5	208	165	201	
8.5	269	244	251	

Moment magnitude (M_w)	Ratio of peak ground displacement (cm) to peak ground acceleration (g)			
	Source-to-	Source-to-site distance (km)		
	0-20	20-50	50-100	
Rock ^a				- 1
6.5	18	23	30	
7.5	43	56	69	
8.5	81	99	119	
Stiff soil ^a				
6.5	35	41	48	
7.5	89	99	112	
8.5	165	178	191	
C - G : 1ª				
50JI SOIL	71	74	76	
7.5	178	178	178	
25	330	320	305	

ΕΕΕΕΘ - 25 Φεβρουαρίου 2009							
Οριζόντια ελατήρια Κγ							
Αναφορά	Σχέση	Δίχως Σεισμό (E=232.5MPa – G=93Mpa) (v=0.25)	Με Σεισμό (E=400Mpa - G=138Mpa) (v=0.45)				
Gazetas, 1991	$K_{\gamma,\text{emp}} = K_{\gamma,\text{mir}} \cdot \left(1 + 0.15 \sqrt{\frac{D}{B}}\right) \cdot \left[1 + 0.52 \left(\frac{h}{B} \cdot \frac{A_w}{L^2}\right)^{0.4}\right]$	K=13.66 MN/m ³	K= 22.89 MN/m ³				
FEMA (2003)	$K_{\gamma} = \frac{8 \cdot G \cdot r_{s}}{2 - v} \cdot \left(1 + \frac{2}{3} \frac{d}{r_{s}}\right)$	K= 7.33 MN/m ³	K=12.28 MN/m ³				
Scott (1973)	$K = \frac{8G}{10H} \cdot \frac{(1-v)}{(1-2v)}$	K= 4.13 MN/m ³	K= 22.49 MN/m ³				
Veletsos and Younan (1994)	K.H = 1.086 $\frac{\pi^2}{4} \cdot \frac{G}{\sqrt{(1-v)(2-v)}}$	K= 8.06 MN/m ³	K= 14.83 MN/m ³				
AFPS/AFTES (2001)	$K = \frac{G}{H}$	K= 3.44 MN/m ³	K= 5.12 MN/m ³				
St. John and Zahrah (1987)	$K_t = K_o = \frac{16 \cdot n \cdot G(1 - v)}{(3 - 4v)} \cdot \frac{H}{L_w}$	K= 5.62 MN/m ³	K=10.19 MN/m ³				
Gerolymos and Gazetas (2006)	$K_{\gamma} = 2.18 \cdot \left(\frac{D}{2B}\right)^{-0.13} \cdot E_s$	K= 6.53 MN/m ³	K=11.25 MN/m ³				
Gazetas and Dobry (piles, 1984)	$K_x = 1.2 \cdot E_s$	K= 3.72 MN/m ³	K= 6.40 MN/m ³				
Κ. Πιτιλάκης & Συνεργ	άτες						

ΕΕΕΕΘ - 25 Φεβρο	ουαρίου 2009	_	_		
	Πολυώ	ροφος Σταθμός	; Μετρό		
		Διατμητική τάση ΚΖ (KN/m ²)			
	Υπολογισμοι	Μέγιστη τιμή	Ενεργός τιμή		
	1D FF αναλύσεις (μέση τιμή)	95.0	66.5		
	1D FF αναλύσεις (Koz95T-μπλε γραμμή)	68.0	47.6		
	Δυναμική ανάλυση (Koz95T)	65.0-70.0	48.0		
• πλή εδα • Δυν	ρης αντιστοιχία τιμώ φικής απόκρισης ατότητα χρήσης τιμώ	ν από πλήρη δυναμ ον από 1D	ιική και 1D αναλύσε	ις ເ <u>κ</u> οο 91	

ΈΕΘ - 25 Φεβρουαρίου 2009	_	_				
Δομικό στοιχείο	Ενεργός ροπή (KNm)					
	Στατική επιβολή μετακινήσεων (δίχως μάζες) (δίχως μάζες)		Δυναμική ανάλυση (με μάζες)			
Σεισμός Κοζάνης 1995						
Πλάκα -4 left (z=-26.7m)	776	650	700			
Πλάκα -4 right (z=-26.7m)	776	850	900			
Πλάκα 0 left (z=-1.5m)	196	330	650			
Πλάκα 0 right (z=-1.5m)	196	370	650			
Διαφράγματα (σύνδεση με πλάκα θεμελίωσης – άνω)	584	350	450			
Διαφράγματα (σύνδεση με πλάκα θεμελίωσης - κάτω)	192	220	300			
	Σεισμός Θεσσαλονίκ	ης 1995				
Πλάκα -4 left (z=-26.7m)	892	700	850			
Πλάκα -4 right (z=-26.7m)	892	1000	1200			
Πλάκα 0 left (z=-1.5m)	201	330	750			
Πλάκα 0 right (z=-1.5m)	201	380	750			
Διαφράγματα (σύνδεση με πλάκα θεμελίωσης – άνω)	673	430	500			
Διαφράγματα (σύνδεση με πλάκα θεμελίωσης – κάτω)	219	240	300			

EEEEO -	25 Φεβρουαρίου	2009		-	-	_	_	-	_	
	Διαμήκης α	α <mark>σύγ</mark> χι	ρονη ι	ταλάν	τωση					
	Table 4	4 Maxim	um tensi	on strain	of segm	ent 1, 2	and 3 in t	test Phas	e 2	
	Average strain		PGA							
	(με)	0.02g	0.05g	0.1g	0.2g	0.4g	0.6g	0.8g	1.0g	
	Segment 1	1.65	2.45	3.06	3.59	3.34	3.76	5.11	4.08	
	Segment 2	3.77	7.95	9.72	10.22	11.19	13.19	14.18	14.85	
	Segment 3	0.62	0.86	1.11	1.14	1.11	2.96	4.14	1.96	
	Εγκάρσια Table 1	ασύγχ 5 Maxim	ρονη materia	ταλάν	τωση	ant 1 2	and 3 in t	act Dhac	a 3	
	1 able 5 Maximum tension strain of segment 1, 2 and 5 in test Phase 5									
	Average strain PGA					•				
	(με)	0.02g	0.05g	0.1g	0.2g	0.4g	0.6g	0.8g	1.0g	
	Segment 1	0.01	0.39	0.59	0.67	0.72	0.56	1.09	1.13	
	Segment 2	6.82	11.05	13.42	16.25	17.65	20.16	23.93	26.82	
	Segment 3	0.67	0.94	0.47	0.73	0.32	1.38	1.62	1.34	
			- '	-				-	10	20129

ΕΘ - 25 Φεβροι	υαρίου Ι	2009	-	_	-	-				
Δυνάμεις	στην	διατυητ	ική κλείδ	α λόν		ζόντιων	νιετακινήσεων			
Horizontal displacement										
Case (a)	d (m)	Ved (kN)	Case (b)	d (m)	Ver	(kN)	Διατμητικη			
	0.10	3630		0.10	19200	15600*				
	0.05	1815		0.05	9600	7800*	σκυροσεματός			
	0.01	363		0.01	1920	1560*				
Δυνάμεις	Δυνάμεις στην διατμητική κλείδα λόγω κατακόρυφων μετακινήσεων Vertical displacement									
Case (a)	d (m)	V _{sd} (kN)	Case (b)	d (m)	V _{sd}	(kN)	αντοχή			
	0.10	38150		0.10	51330	13160*	σκυροδέματος			
	0.05	19075		0.05	25665	6580*	2600KN			
	0.01	3815		0.01	5133	1316*				

ΕΕΕΕΘ - 25 Φεβρουαρίου 2009									
Φορτία διατομής για τον συνδυασμό λειτουργίας στην <u>οριακή κατάσταση αστοχίας</u>									
Στοιχείο	Θέση	Q (KN)	N (kN)	M (kNm)					
	αριστερή στήριξη	-2075.78	-1383.34	-3981.53					
πλάκα Π1	άνοιγμα	84.22	-1383.34	3984.69					
	δεξιά στήριξη	2244.22	-1383.34	-5329.09					
	αριστερή στήριξη	-98.89	-1360.81	-5119.28					
πλάκα Π2	άνοιγμα	171.11	-1360.81	-5155.39					
	δεξιά στήριξη	441.11	-1360.81	-5461.49					
	αριστερή στήριξη	-2261.25	-1343.18	-5536.59					
πλάκα Π3	άνοιγμα	-101.25	-1343.18	3913.41					
	δεξιά στήριξη	2058.75	-1343.18	-3916.60	N				
	αριστερή στήριξη	1773.49	-1281.69	2668.58					
πλάκα Π4	άνοιγμα	-163.66	-1270.08	-2696.49					
	δεξιά στήριξη	-2092.12	-1267.01	5032.24					
	αριστερή στήριξη	213.80	-1289.63	4991.40					
πλάκα Π5	άνοιγμα	4.92	-1289.63	4882.03					
	δεξιά στήριξη	-395.98	-1289.87	5173.57					
	αριστερή στήριξη	2274.82	-1307.86	5380.84					
πλάκα Π6	άνοιγμα	108.42	-1315.84	-3364.65					
	δεξιά στήριξη	-1816.28	-1330.14	2941.94					
τοίνωμα Τ	1 πάνω	1385.54	-2057.93	3981.53					
ιοιχωμα ι	κάτω	-1285.72	-1845.60	2668.58					
τοίγωμα Τ	α πάνω	-22.53	-2343.11	-209.81					
	κάτω	-22.53	-2494.99	-40.84					
τοίνωμα Τ	3 πάνω	-17.62	-2702.36	75.09					
	κάτω	-17.62	-2854.23	207.27					
τοίνωμα Τ	4 πάνω	-1345.30	-2042.71	-3916.60					
Τοιχωρα Τ	κάτω	1335.24	-1880.81	-2941.94					

ΕΕΕΕΘ - 25 Φεβρουαρίου 2009										
Φορτία διατομής για τον σεισμικό συνδυασμό στην οριακή κατάσταση αστοχίας										
	Στοιχείο Θέση		Συνδυασμός ΣG+ΣψΟ.+Α			Συνδυασμός ΣG+ΣψΟΑ				
	LIGIZEIO	0101	Q (kN)	N (kN)	M (kNm)	Q (kN)	N (kN)	M (kNm)		
	πλάκα Π1	αριστερή στήριξη	-1567.05	-1470.81	-3490.83	-1457.79	-570.89	-2121.87		
		άνοιγμα	41.71	-659.66	2569.34	133,45	-1382.04	3216.66		
		δεξιά στήριξη	1872.77	-1061.83	-4681.27	1502.39	-979.87	-3734.05		
	πλάκα Π2	αριστερή στήριξη	-259.24	-981.21	-3954.22	-43.66	1029.79	-4163.86		
		άνοιγμα	-53.33	-997.51	-4007.59	150.43	-1013.49	-4007.59		
		δεξιά στήριξη	140.76	-981.18	-4051.32	356.34	-1029.82	-4260.96		
	-) (αριστερή στήριξη	-1878.09	-1050.66	-4741.45	-1507.71	-968.76	-3794.23		
	πλακά 113	άνοιγμα	-134.75	-624.32	3199.01	-51.05	-1395.10	2551.69		
		δεξιά στήριξη	1651.75	-1459.71	-3465.99	1542.45	-559.71	-2096.93		
	πλάκα Π4	αριστερή στήριξη	735.63	-321.85	798.01	1789.85	-1725.83	3490,91		
		άνοιγμα	-76.52	-695.78	-2001.03	-79.64	-1333.26	-2173.0		
		δεξιά στήριξη	-1388.39	-1058.34	3280.30	-1377.75	-965.70	3150.16		
		αριστερή στήριξη	-31.16	-988.82	2874.24	586.98	-1066.06	3489.20	Ν	
		άνοιγμα	-184.72	-1039.90	2982.18	427.04	-1014.98	2982.18		
		δεξιά στήριξη	-53.97	-989.80	2959.37	-672.11	-1065.44	3574.33		
		αριστερή στήριξη	1413.59	-976.58	3279.21	1424.23	-1070.82	3414.67		
	πλακά Π6	άνοιγμα	64.43	-1374.64	-2393.09	70.75	-685.22	-2221.11		
		δεξιά στήριξη	-750.04	-340.01	912.50	-1804.34	-1742.23	3605.40		
	τοίχωμα Τ1	πάνω	724.42	-1467.07	2121.77	1354.38	-1536.83	3490.93		
		κάτω	-416.18	-2201.37	798.01	-1666.92	-1078.35	3490.91		
	τοίχωμα Τ2	πάνω	-100.04	-1532.13	-517.52	69.34	-2145.93	220.28		
		κάτω	93.19	-2259.88	-358.04	-123.89	-1643.18	291.02		
	τοίχωμα Τ3	πάνω	-80.48	-2248.35	-257.20	88.90	-1634.55	480.60		
		κάτω	112.75	-1745.60	-244.44	-104.33	-2362.30	404.62		
	τοίχωμα Τ4	πάνω	-1341.72	-1531.90	-3466.10	-711.72	-1462.16	-2096.82		
	<u> </u>	κάτω	1688.41	-1076.16	-3605.40	437.53	-2199.24	-912.50	158	

Συμπεράσματα (2)

- Η καταλληλότερη μέθοδος ανάλυσης παρόμοιων έργων είναι η πλήρης δυναμική ανάλυση (έδαφος+ εγκιβωτισμένη κατασκευή) σε 2 η 3 διαστάσεις. Η πλήρης δυναμική (αριθμητική) ανάλυση μπορεί να εντοπίσει και να αποδώσει σωστά τις ιδιαίτερες πτυχές της σεισμικής απόκρισης του έργου
- Η προσεγγιστική μέθοδος του συντελεστή διατμητικής ευκαμψίας (ranking coefficient) είναι αρκετά ακριβής για ορθογωνικές διατομές μικρού σχετικά ύψους
- Η συμμετοχή των στατικών φορτίων και ιδιαίτερα της άνωσης είναι γενικά σημαντικότερη από τις σεισμικές φορτίσεις, με αποτέλεσμα να αμβλύνονται οι διαφοροποιήσεις στα αποτελέσματα των διαφόρων μεθόδων που προκύπτουν από το δυναμικό μέρος της μελέτης και την γεωμετρία της κατασκευής

165

Συμπεράσματα (4)

- Διαμήκης ανάλυση με βάση την προσομοίωση δοκού επί «ελατηριωτού» εδάφους (με αποσβέσεις) είναι γενικά ικανοποιητική αρκεί να υπολογισθούν σωστά (??) οι συναρτήσεις των δεικτών εμπέδησης
- Απαραίτητος ο έλεγχος για ασύγχρονη ανομοιόμορφη φόρτιση.
 Εξ'αυτής προκύπτουν τα σημαντικότερα εντατικά μεγέθη τόσο στον κορμό (σε περίπτωση συνεχούς κατασκευής χωρίς αρμούς)
 όσο και μάλιστα κατεξοχήν και στους αρμούς
- Η διαμόρφωση (τεχνολογία) και ο υπολογισμός των αναπτυσσόμενων εντατικών μεγεθών και παραμορφώσεων (στροφές, μετακινήσεις) στους αρμούς είναι ο κυρίαρχος παράγοντας διαστασιολόγησης μιας κατασκευής ανάλογης τυπολογίας με αυτές που εξετάσθηκαν

H (1) 167

